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TEMPERATURE FERMI RESONANCE IN CRYSTALS

Key words: Fermi resonance, sum or difference of pho-

non frequencies, phonon bound states, soft mode

I.J. Lalov
Faculty of Physics, University of Sofia
Sofia 1126, Bulgaria

ABSTRACT

Some peculiarities of the crystals' vibrational

spectra are studied in this work at non-zero temperatu-
res and occasional fundamental frequency coincidence
with the sum or difference of the frequencies of two
other vibrations (temperature Fermi-resonance). The
anharmonic interaction between the fundamental and the
compound tone was shown to cause a renormalization of
the spectrum also in the difference frequency region.
The dielectric permittivity has been calculated in the
temperature Fermi-resonance frequency region. The soft
mode interaction with temperature excited difference

tones in ferroelectrics has been analysed.
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1. INTRODUCTION

The Fermi-resonance phenomenon is well studied in
molecular1 and c:rys'calz_S vibrational spectra; it is
observed for occasional coincidence of the frequency
Wy for a given fundamental tone with the overtone
(w3 ~ 2w1) or compound tone (w3 oWy wz) frequency.
The two states with equal symmetry interact anharmoni-
cally and the mixing between the fundamental and com-
pound tones causes renormalization of the vibrational
spectrum in which typical Fermi doublets appear. The
phenomenon in crystals is more complicated3 since the
fundamental tone wg resonates - because of anharmonici-
ty - with the two types of phonon states in the frequen-
cy region: (1) bound states -~ biphonons -~ that describe
the movement of the two phonons in the crystal as a
whole; (2) many-particle states corresponding to unbound
separate propagation of the phonons in the crystal,

Some specific peculiarities of the Fermi resonance
in crystals are studied in this work at finite tempera-
tures when the resonating phonon modes (or some of them)
are temperature-excited, i.e. the phonon occupation num-
bers have non-zero values. The temperature amplifies the
anharmonic interaction between the modes due to additie-
nal interaction between the excited real phonons6’7.
Processes with simultaneous excitation of @, phonon and

absorption of real phonon with frequency «, become pos-
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sible at T # 0; in the frequency region wymw, the anhar-
monicity modulates the spectrum and may cause6 one-par-
ticle state splitting (a difference biphonon). For this
reason, Fermi-resonance at T # 0 - temperature Fermi-re-
sonance - is possible also under occasional coincidence
of ws with the difference Wymwy, Wi N W, mw . This possi-
bility is especially interesting when the resonating
fundamental tone frequency ws varies with temperature

(soft mode, sees’5

) or due to other reasons (for example,
with variations of the concentration in mixed crystalsg).
The influence of the coupling between one- and two-

phonon states on the dielectric properties and on the
infra-red crystal spectra has been investigated by Szi-
gett121 in the frameworks of the perturbation theory
These papers contain estimation of the infrared spectra
intensities; however it is impossible to receive using
perturbation theory many essential details concerning
frequency dependence (for example it is impossible to
investigate the presence of the bound two-phonon states4).
In the present paper we use the more precise Green func-
tions' method.

The subsequent text contains: (a) calculation of the
cross dielectric permittivity under temperature Fermi-
resonance conditions (Section 2); (b) analysis of the
equation for the crystal vibrational spectrum under the

same conditions (Section 3); (c) some notes on the soft
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mode interaction with two-phonon comtinuum in ferroelec-

trics (Section 4).

2. CROSS DIELECTRIC PERMITTIVITY AT TEMPERATURE FERMI-

RESONANCE

In the theoretical study of the temperature Fermi-

resonance we shall use the following model Hamiltonian:

~

>
H = Zhe (K)bIb, + Zhe, (k)c'c + The,(K)a'a +
TR R Y Urr R YR

k 14

+ A + +
* N ., , b, +_ ) Ltbs }(c? tc”
h,k1,k2 K, -k, -ﬁ—k1 K+i] E, -k,

1 +
(c, , +ct ) + — I T(K)(a,+a* ) (b +b™ )
K-, -K+K, VN K, kK -¥ ® -

+
RS e A M
where (bk,b;), (ck,c;) and (ak,a;) are the corresponding
Bose operators for the interacting phonons, N is the
number of unit cells in the crystal; I'(K) and A are an-
harmonic constants that express 3d and 4th power terms

in the nuclear potential energy expansion in a series in
normal coordinates. A similar Hamiltonian characterizes
the situation when the anharmonicity is above all of
intramolecular origin while the anharmonic terms genera-
ted by intermolecular interaction (seelo) are negligible.
Hamiltonian (1) is a generalization of the Hamiltonian

used in6 as well as inz’s’ll. The last term in (1) ex-
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presses the possibility for Fermi-resonance; it is not
vanishing only when the symmetry of the vibration £,
coincides with the symmetry of the compound tone besc,
E5 i = a,b,c, normal coordinates, corresponding to opti-
cal phonon.

The cross dielectric permittivity e(w,K) will be cal-
culated in a dipole approximation12—14. For this purpose
we shall find the mean value <P(t)> for the electric di-

pole moment (per unit cell of volume v), induced by an

electromagnetic wave with electric field intensity:

B - ﬁoel(f'r““’t) + c.c (2)
For the cress dielectric permittivity, we obtain the
. 13,14
expression

i 2 ~
eij(w,ﬁ) oCNCHP TR < [pi(r),Jj(n,o)»w) (3)

where ¢ = 8.85 x 10712 F/m, §,. is the Kronecker sym~

ij
bol, P is the electric dipole moment operator for one

unit cell in the crystal:

P = Te T 4
P = (4)

The summation in (4) runs over all charges e, in the

unit cell and ;u is the charge coordinate operator. The

operator 3,K) in a dipole approximation has the follo-

wing form13’14:
R €g 4 -i .;20)
K) =2 L Je 5
J(K) =@ Jg (5)

=
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~

The quantities my and JB are mass and momentum ope-
rator and rgo) is the equilibrium position of charge 8;
the summation in (5) extends over all charges in the
crystal. The quantity <> in (3) represents a Fou-
rier-component by time for the following retarding

Green function
<[§i(r),3j(k‘,0)]> = -ie(T)<[§i(r),3j(K,0)1> (6)

In the second quantization representation, the opera-

13,14

tors ﬁ and S(K) have been calculated in for a fun-

6,15 for the

damental tone of the vibration w; and in
compound tones w,tw,. Under Fermi resonance the opera-
tors P and 3(K) represent sums of the corresponding ope-

rators for the fundamental and compound tones:

-
~ p3 + ﬁz +
P = Z[—=2(a,*a’,) + Z(b,+b ) (c, ,*c, )] (7
AV I L R
~ > -
J(0) = iwg(KIVN Bylaj-a ) +
K =X

+

> + +
ip, Slw (KY(bT =b )(c's stc, ) +
P2 31 2 F Kk Rt

+

> > + +
wZ(K-k)(b S¥b) (e, L-c, )] (8)
-k k -K+k K-k

In (7) and (8) the possible dependence of the vectors
32,53 on the wave vectors (K,k) has been neglected as
weakﬁ. Due to the equal symmetry of the fundamental tone
and the compound tone, the matrix elements of the elec-

tric dipole moment 52,53 are colinear (if the correspon-
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ding nondegenerate representation £3 allows only one di-

rection of the non-zero polar vector):
> >
Py = >\P3 (9)
The quantity A is usually lower and even considerably
lower, than unity and it expresses the electro-optical
anharmonicity,
To calculate ¢ we need the following Fourier compo-

nents of retarding Green functions, see formulae (6) to

(8):

g,(«,K) = <[(ag(x) + ali(x),ap(0)-a_ (0)1> (10a)
g,(w,K) = <[§,(bK(T)+b’_'K(T))(c+_+(T)+c1_+(T)),
a3(0) - a ,(0)1>, (10b)
K -K

and the corresponding functions g3 and g4 in which the
first operators (t) in the correlators are the same as
in g4 and g, but the second operator t = 0 has been
substituted by the second addend in (8). The Green
functions are calculated by a standard procedure with
time differentiation and subsequent decoupling of the
chain of equations for the Green functions6. The next

correlations are used:

+ + b b
<(bk1+b-k1)(bk2tb-kz)> ~ 8y "kz{n (k) n"(k,)+11} (11)

-1

where nP?S(k) = {expl hw, ,(k)/(kT)] - 1}~ are the
1,2

Planck occupation numbers of the phonon modes. After
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decoupling of the chain, the set of equations for the

Fourier components of functions (10) is solved exactly

producing
2 -1
412 (K w (K32~ (0, K)
2w 3 0
gq(w,K) = R
! wz-wg(x) w? -0 (K)
CIT (0,0 ¢ T,y(w,01)
g, (0,00 = 30— 4710, 0) | [T, (0,K)+T,(,K)]
w —wS(K)
g5 (,K) = 0 (K)g,(w,K)
g,(©,K) = 20871 (0,K) . [T,(w,K) + T,(w,K)]
where
2
A (0,K) = 1 - 4(A izﬁféféffl)[T (@, K)+T, (,K)]
w, = - + w, + w,
(o] W "‘JS(K] 1 2
p Ly (K=K way ()11 1+n° (k) +n (K-K)1
T,k =52 Z
k wz-[wz(K-k)+w1(k)]

) Loy (K¢K) = ()1 .£0° (k) =S (K+K)]
TZ(M,K) = N E

wh o e, (Kek) =0, (K)] 2

(12a)

(12b)

(13a)

(13b)

(14)

(15)

(16)

Using formulae (3), (7), (8), (12), (13) we obtain

the following expression for the tensor e (w,K)

2 ig «s®
[1300 0% T fay T TR P3PS T
T, (@, K)+T, (@, K) i TKeg(K)

) +
+ MRy (p; ;gjzgfi;-— P3)
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. ZP(K)w (X)
J

(P —7——Zz—;—* p%) (17)

When eqn (9) holds, formula (17) is simplified:

.6 e = .. - 2 pg (K)
Ty (0, K)+T, (w,K) 2r (K)ws (K)
T TR &K Ry reanl B (18)
o’ w -w3(K)

The constant I'(K) is particularly important for the
manifestation of Fermi-resonance: if T'(K) = 0, the
dielectric permittivity has resonances in separate, inde-
pendent regions w =~ wS(K) and w = wz(kz) + w1(k1). If
r(K) # 0 the resonances in the compound tone region are
amplified (see last factor in (18)). The factor
[x + 2F“3/(“2'“§)]2 expresses in the case considered
the phenomenon Fano antiresonance16: interaction of a
discrete level wS(K) with continuum wz(kz) + w1(k1).
This factor may vanish if the two addends are equal in
absolute values but with opposite signs (destructive
interference between one- and two-phonon contribution to
dielectric permittivity).

Since the imaginary part of the quantity e determi-
nes the frequency dependence of the absorption coeffi-
cient, the Fermi-resonance intensity redistribution is

10,17

manifested also in the absorption spectra . Unlike

. .10 . .
the case T = 0, studied in" ", in our case Fermi reso-
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nance will appear also in the difference frequency re-

gion w ~ w, - W, (T2 #0at T#0).

3. VIBRATIONAL SPECTRUM AT TEMPERATURE FERMI RESONANCE

The vibrational spectrum is defined be the Green
function poles, i.e. by the equation A (w,K) = 0. A si-

milar spectrum has been analysed in>®

and we shall
point out only some peculiarities.

The effective interaction between b~ and c-phonons
is expressed by the anharmonicity factor

FZ(K)wS(K)

A'(w,K) = A + (19)

RIS
While usually A < 0, the second addent changes its
sign depending on the frequency w and the following
cases are possible: A'(w,K) < 0 (attraction between b~
and c-phonons) and A'(w,K) > 0 (repulsion). The two
continuums @, (K )+w,(k,) and w, (k) ~w (K1) form quasi-
continuous bands called many-particle bands (MP bands),
The discrete levels may split and they correspond to
one-particle bound states -~ biphonons. These levels may
exist above the corresponding MP band (at A'(w,K) > 0)
and below it (at A' < 0).

The vibrational spectrum may be more suitably analy-
sed by rewriting equarion Ao(w,K) = 0 into the follo-

wing form (at w =~ ws(K)).
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2'[ T] (Q,K)+T2(w,K)] w'ws(K)

F(w,T) = T-TA T1((¢3,KJ+T2(("’JK_J]

(20)
rf(x)

Both side of eqn (20) may be temperature dependent:
the left side via the occupatien numbers nb, n® and the
right hand side - with temperature variations of Wy In
this Section we suppose that the frequency ws(K) is lo-
cated near a given many-particle band, or w1(k1)+w2(k2)
or wz(kz)-w1(k1) and varies weakly with temperature. In
this case the temperature dependence for the spectrum is
correlated with the function F(w,T) and only one of the
quantities T1 or T2 is resonant. Thus, if w = wS(K) ~
~ wz(kz)—w1(k1), resonant would be the sum TZ’ and T1
would be almost w-independent. The temperature Fermi-
resonance considered here is strongly expressed namely
in the wS(K) frequency region. The vibrational spectrum
in the second region (for example w' = w1(k1)+w2(k2))
located far from ws(K) would be practically unaffected
by the Fermi resonance and would experience only the
anharmonic interaction via the constant A.

Equation (20) has different solutions depending on
the values of this constant A17’18:

(1) for weak anharmonivity A =~ 0 the denominator on
the left side of (20) is not vanishing for any w value
(Fig. 1). It would be noted that outside the regions
”z(kz)fw1(k1) the sums T1 and T2 increase in absolute

value with the temperature due to the increasing occupa-
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Q (T”)
2
w b
) //h\
s | Nl F(w,T")
/ o
01(Tv) wS(K) \‘\-._
= —
‘~\ y) w
~ ’
w |/
N7
91(T" \ |7
T'l > Tl
MP

FIG. 1. Graphic solution of the equation (20), small
anharmonicity case (A ® 0). The curve F(w,T) is
the plot for left side of (20), the line
throught wz(X) point is right side plot; MP -
many - particle band; wy, w, - one - particle
levels below and above the band MP; w b - quasi-
bound level. q

tion numbers in the numerators. The one-particle lewvel
n1(T) is removed away from the MP band with increasing
temperature; however a second one-particle level QZ(T)
may appear above this band. The solutions qu of (20)
lying inside the MP band correspond to quasi-bound, de-
caying states,

(2) for large anharmonicity A there appears a pole
w1(T) of the function F(w,T), see Fig, 2. This pole is

temperature-dependent6 its separation from the MP band
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F(w,T)

eV

2 (1)

l— MP .

FIG. 2. Graphic solution of (20), strong anharmonicity
case; w((T) - the pole of F(w,T), for the other
symbols see fig. 1. Two one-particle levels -
wgs @, - appear below MP.

increasing with temperature. For large values of the Fer-
mi resonance constant I'(K) a Fermi doublet of one-par-
ticle levels appears, one level being below and another
above the MP band, moving away from this band with in-
creasing T. If however the Fermi resonance is more
weakly expressed (intermediate values of the constant
r(k), Fig. 2), the two one-particle levels Qa and Qb
may lie below the MP band.

The actual picture for the spectrum may differ in de-

tails from the picture depicted here. Thus the vibratio-
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nal spectrum would change if the level ws(K) lies above

3’16’16J,At Fermi

the MP band (for different cases, see
resonance in the sum region, Wy ¥ W e, such a picture

characterizes the two-phonon region even at T = 0. Fermi
resonance in the difference region Wy N wymwy would not
appear at T = 0. The sum T, increases and the difference
spectrum is intensified with increasing temperature: the
MP band appears and consecutively also the one-particle

states from Fig., 1. At even higher temperatures and con-

siderable anharmonicity A, the picture in Fig. 2 may be

observed in the difference spectrum.

4. SQFT MODE AND FERMI RESONANCE

As known when the temperature approaches the ferro-
electric phase transition temperature, T - TC’ T < TC’
the soft mode frequency decreases and tends to zero.

It falls within the frequency region lower than the
fundamental optical vibrations where the differences
from their frequencies are however found. If some of
the vibrations are temperature excited, the considered
temperature Fermi resonance generates peculiarities for
the infrared and Raman spectra. It should born in mind
that the soft mode is dipole active and for this reason
our calculation of eL is in this case actual.

The analysis of the vibrational spectrum is once

again based on eqn (20); we have to suppose that the
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el

>
T

T
c

FIG. 3. Fermi-doublet in the difference frequiency re-
gion near ferroelectric phase transition, T -
transition temperature. Dashed curve - soft mode
behaviour without Fermi-resonance.

frequency ws(K,T) decreases with increasing temperature,
i.e. it approaches from above the MP bands of Fig. 1-2,
passes these bands and moves away into the low-frequen-
cy region. The passage of the soft mode through the sum
and difference MP continuums causes splitting (Fig. 3),
Fermi doublets and eventually Fermi triplets appearing
(two one-~particle lavels and one MP band). Similar
spectra have been observed many times (first in quartz
and ALPOi). The approach of the soft mode to the MP
band enhances the corresponding spectral line intensity
(in formula (18) [A + 2rwg/(w’-w?)1? the second addend

in the factor may considerably exceed A if w = wz(K,T).
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At Fermi resonance among the soft mode and several
continuums in the low-~frequency region, the spectrum
acquires even a quasi-continuous nature as if no sepa-
rate lines are excited but whole frequency regions

. 5
(LiNBO PBSGe3 gs See’).

3’
5. CONCLUSION

In this work, the interaction between fundamental
vibrations and compound vibration equalling the sum or
difference of the frequencies for two different vibra-
tions, have been studied., The temperature excitation
of some phonon modes amplifies the interaction between
the quasi-particles in the crystal and provides quali-
tatively new possibilities: a fundamental tone interact-
ing with a difference tone and anharmonic renormaliza-
tion of the difference spectrum. Our results about the
renormalization of the yvibrational spectrum and inten-
sity redistribution at temperature Fermi resonance are
qualitatively confirmed5 by experiments on the soft mode
temperature behaviour. These experiments raise the prob-
lem of analytical and numerical computation of two-pho-
non spectra in concrete materials, seelg.

Naturally, the temperature excitation of some phonon
modes amplifies their effect on the phonon line width.
Some experimental data20 raise important problems about

the simultaneous influence of anharmonicity and tempe-
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rature on the shape and width of spectral lines in two-
phonon spectra, whichwill be treated in a subsequent publi-

cation.
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